Спецификация

#	Название модуля	Заданий	Балл
1	РТ4 Математика 2.4		
1.1	10.1.1.1 Проверять является ли функция решением ДУ 1 порядка 10.1.1.2 Находить частное решение уравнения из общего решения 10.1.2.2 Разделять переменные 10.1.6.1 Проверять необходимое условие ДУ в полных дифференциалах 10.1.7.1 Определять тип ДУ первого порядка и выбирать метод решения	1	1,00
1.2	10.1.4.1 Методы решения линейного ДУ (Лагранжа, Бернулли) 10.1.5.1 Методы решения уравнения Бернулли (подстановки)	1	1,00
1.3	10.1.2.1 Находить общий интеграл ДУ с разделяющимися переменными 10.1.3.2 Находить общий интеграл однородного ДУ 10.1.4.2 Находить общее решение линейного ДУ	1	1,00
1.4	10.1.5.2 Находить общее решение уравнения Бернулли 10.1.6.2 Находить общий интеграл ДУ в полных дифференциалах	1	1,00
1.5	10.2.1.2 Находить частное решение уравнения высшего порядка из общего решения 10.2.2.1 Выбирать подстановку, понижающую порядок ДУ	1	1,00
1.6	10.2.3.1 Записывать характеристическое уравнение для ЛОДУ высших порядков с постоянными коэффициентами 10.2.3.2 Восстанавливать ДУ по характеристическому уравнению и по его корням	1	1,00
1.7	10.2.3.4 Записывать общее решение ЛОДУ 2-го порядка и выше 10.2.4.1 Записывать структуру частного решения ЛНДУ по виду специальной правой части (без поиска коэффициентов) 10.2.4.2 Записывать структуру общего решения ЛНДУ со специальной правой частью (без поиска коэффициентов)	1	1,00
1.8	15.1 Классическое определение вероятностей	1	1,00
1.9	15.2 Геометрическое определение вероятностей	1	1,00
1.10	15.3 Вероятность хотя бы одного события	1	1,00
1.11	15.4 Комбинаторика	1	1,00
1.12	15.5 Число способов	1	1,00
1.13	1. Пространство элементарных событий, алгебра событий. Классическая вероятностная схема, комбинаторный метод расчета вероятностей.	1	1,00
1.14	2. Аксиоматика теории вероятностей, основные теоремы теории вероятностей, формулы полной вероятности и Байеса, формула Бернулли.	1	1,00
1.15	15.6 Схема Бернулли	1	1,00
	Итого	15	15,00

МОДУЛЬ: РТ4 МАТЕМАТИКА 2.4

Nº	Ответ	Вопрос
1	3	После разделения переменных уравнение e^{-y} $(1+y')=1$ примет вид 1) $dx=(1+e^{-y})dy$ 3) $dx=rac{dy}{e^y-1}$ 2) $dx=(1-e^{-y})dy$ 4) $dx=rac{dy}{1-e^y}$
2	4	Линейное уравнение $y'-2xy=x-x^3$ эквивалентно системе уравнений
3	1	Общее решение уравнения $y'-2xy=2xe^{x^2}$ имеет вид $ ^{1)}\;y=\left(x^2+C\right)e^{x^2} \qquad \qquad ^{3)}\;y=\left(e^{x^2}+C\right)e^{x^2} $ $^{2)}\;y=x^2e^{x^2}+C \qquad \qquad ^{4)}\;y=e^{2x^2}+C $
4	3	Общее решение уравнения $xy'+y=y^2\ln x$ имеет вид 1) $y=-rac{x}{x+C-x\ln x}$ 3) $y=rac{1}{1+\ln x+Cx}$ 2) $y=rac{x}{1+\ln x}+Cx$ 4) $y=rac{1}{1+\ln x}+C$
5	А Б В Г 4 1 3 2	Общее решение дифференциального уравнения 2-го порядка имеет вид $y=-\frac{x^2}{4}+C_1\ln x+C_2$. Установить соответствие начальных условий и частных решений уравнения $\frac{\text{Начальные условия}}{\text{Начальные условия}} \qquad \frac{\text{Частные решения}}{\text{Частные решения}}$ $A) y(1)=-1, y'(1)=3 \qquad \qquad 1) y=-\frac{x^2}{4}-\frac{3}{2}\ln x+\frac{5}{4}$ $2) y=-\frac{x^2}{4}-\frac{1}{2}\ln x+\frac{1}{4}$ $2) y=-\frac{x^2}{4}-\frac{1}{2}\ln x+\frac{1}{4}$ $3) y=-\frac{x^2}{4}+\frac{5}{2}\ln x+\frac{9}{4}$ $4) y=-\frac{x^2}{4}+\frac{7}{2}\ln x-\frac{3}{4}$
6	А Б В Г 2 4 3 1	Установить соответствие линейного однородного дифференциального уравнения 3-го порядка и его характеристического уравнения $A)y'''-8y=0 \\ b)y'''-6y''+12y'-8y=0 \\ b)y'''+3y''-4y'=0 \\ c)y'''+3y''-4y'=0 \\ c)y'''+3y''-4y=0 \\ c)y'''+3y''-4y'-4y=0 \\ c)y'''+3y''-4y'-4y'-4y'-4y'-4y'-4y'-4y'-4y'-4y'-$
7	4	Общее решение однородного линейного уравнения 2-го порядка $y''-3y'+2y=0$ имеет вид 1) $y=C_1e^{-x}+C_2e^{-2x}$ 3) $y=e^{-3x}+e^{2x}$ 2) $y=C_1e^{-3x}+C_2e^{2x}$ 4) $y=C_1e^x+C_2e^{2x}$
8	1/4	В семье 4 ребенка. Вероятность того, что из них 3 мальчика равна Ответ запишите в виде обыкновенной дроби

Nº	Ответ	Вопрос			
9	3/4	В сигнализатор поступают сигналы от двух устройств, причем поступление каждого из сигналов равновозможно в любой из промежутков времени длительностью в 2 часа. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше 1 часа. Вероятность того, что сигнализатор сработает за 2 часа равна Ответ запишите в виде несократимой обыкновенной дроби			
10	0.933	В ящике 10 деталей, из которых 7 стандартных. Наудачу извлечены 2 детали. Вероятность того, что среди извлеченных хотя бы одна стандартная равна Ответ запишите в виде десятичной дроби с точностью до 3 -х знаков			
11	161700	Вычислите C^3_{100}			
12	3	Из 6 флажков различного цвета, взятых по 2 , можно составить сигналов 1) 15 3) 30 2) 10 4) 20			
13	2	В лифт 9-этажного дома сели 4 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со второго) этаже. Вероятность того, что хотя бы двое вышли на одном этаже, равна: $1) \frac{C_8^4}{8^4} \qquad 2) \frac{A_8^4}{8^4} \qquad 3) \frac{C_4^2}{8!} \qquad 4) \frac{C_4^2 + C_4^3 + C_4^4}{8^4} \qquad 5) \frac{C_4^2 + C_4^3 + C_4^4}{8!}$			
14	3	Каждое из трех независимых событий может произойти в результате опыта с вероятностями $0,2;\ 0,3;\ 0,4$ соответственно. Вероятность того, что в результате опыта произойдёт только одно из этих событий, равна 1) $0,336$ 2) $0,188$ 3) $0,452$ 4) $0,9$ 5) $0,664$			
15	0.3	Вероятность того, что расход электроэнергии в течение одних суток не превысит установленной нормы равна $0,75$. Вероятность, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы равна Ответ запишите с точностью до десятых			

© Томский политехнический университет , 2024