Спецификация

#	Название модуля	Заданий
1	РТ1 Физика 1 для СПО	±
1.1	1.1.1 Рассчитывает проекции и модули: перемещения, скорости и ускорения поступательного движения, решая прямую и обратную задачи кинематики	
1.2	1.1.2 Рассчитывает линейные и угловые кинематические характеристики и их связь для описания вращательного и криволинейного движения объекта	1
1.3	1.1.3 Определяет вид и уравнение траектории движения	1
1.4	1.1.4 Анализирует виды движения по функциональным зависимостям между величинами, представленными виде уравнений или графиков	
1.5	1.2.1 Рассчитывает характеристики движения, применяя законы Ньютона при поступательном движении тел	1
1.6	1.2.2 Определяет и рассчитывает импульс тела, импульс силы и связь между ними	1
1.7	1.2.3 Анализирует характеристики движения материальной точки при движении по окружности, применяя второй закон Ньютона	1
1.8	1.3.1 Рассчитывает момент инерции тел, в том числе применяя теорему Штейнера	1
1.9	1.3.2 Определяет и рассчитывает характеристики вращательного движения тел, применяя основной закон динамики вращательного движения	1
1.10	1.3.3 Рассчитывает энергию, работу и мощность при вращательном движении	1
1.11	1.5.3 Анализирует характеристики движения тел, применяя закон сохранения полной механической энергии	1
1.12	1.5.4 Рассчитывает параметры движения тел, применяя закон сохранения импульса, момента импульса и полной механической энергии	1
1.13	1.5.5 Рассчитывает характеристики движения тел, применяя закон сохранения импульса и момента импульса	1
	Итого	13

МОДУЛЬ: PT1 ФИЗИКА 1.4 + PT1 ФИЗИКА 1.6 СПО

Nº	Ответ	Вопрос
1	5	Радиус-вектор точки A относительно начала координат меняется со временем по закону $ec{r}=2t^2i-3tj$. Все величины представлены в единицах СИ. Модуль скорости точки A через $1\ c$ от начала отсчета равен м/с. Ответ запишите с точностью до целого числа
2	18	Диск радиусом $10~{_{\rm CM}}R$ вращается так, что зависимость углового ускорения точек, лежащих на ободе диска, от времени задается уравнением $\varepsilon=2t^2$. Все величины представлены в единицах СИ. Угловая скорость точек на ободе диска в конце третьей секунды от начала движения равна рад/с \cdot . Ответ запишите с точностью до целого числа
3	1	Если частица движется в плоскости OXY из положения $x_0=y_0=0$ со скоростью $ec v=2i+3tj$ (м/c), то уравнение траектории частицы будет иметь вид 1) $y=rac38x^2$ 3) $y=rac34x^2$ 2) $y=x^2$ 4) $y=2x+rac32x^2$
4	А Б В Г 2 5 3 4	Установите соответствие
5	30	На тело, сила тяжести которого равна $15~\mathrm{H}$, лежащее на горизонтальной плоскости, действует сила F , направленная под углом 30° к плоскости (рис.). Коэффициент трения тела о плоскость $\mu=\frac{\sqrt{3}}{2}$. Величина минимальной силы F , при которой тело сдвинется с места равна H. Ответ запишите с точностью до целого числа
6	1	Импульс материальной точки изменяется по закону $ec p=10ti+3t^2j$. Все величины представлены в единицах СИ. Модуль силы, действующей на точку в момент времени $t=4$ с, равен H. 1) 26
7	А Б В Г 3 1 6 2	Небольшое тело массой m соскальзывает без трения с вершины неподвижной полусферы, радиус которой R . На высоте $h=R/6$ скорость тела v . На некоторой высоте от основания полусферы тело отрывается от поверхности полусферы. Установите соответствие между силами, действующими на тело или опору и математическими соотношениями, по которым эти силы можно рассчитать

Nº	Ответ	Вопрос	
8	6	Платформа в виде диска диаметром 2 м, масса $m=8$ кг вращается вокруг оси, проходящей через середину одного из радиусов перпендикулярно плоскости платформы, момент инерции диска относительно оси вращения равен кг \cdot м 2 . Ответ запишите с точностью до целого числа	
9	4	Изучая динамику вращательного движения с помощью маятника Обербека, момент инерции уменьшили в 2 раза, а момент силы увеличили в 3 раза, при этом угловое ускорение 1) увеличится в 3 раза 2) уменьшили в 9 раз 4) увеличится в 6 раз Двигатель, равномерно вращая маховик с угловой скоростью равной 8 рад/с, развивает мощность	
10	12,5	$100~{ m B_T}$, момент силы, действующий на маховик, равен Н \cdot м.	
11	А Б В Г 3 5 4 2	Искусственный спутник массы m , движется по круговой орбите радиуса r вокруг Земли со скоростью v . Установите соответствие между физической величиной, характеризующей движение спутника на орбите и математическим соотношением $\frac{\Phi U3U4ECKAЯ BEЛИЧИНA}{\Phi U3U4ECKAЯ BEЛИЧИНA} \qquad \qquad \frac{MATEMATU4ECKOE COOTHOWEHUE}{material}$ $A) работа силы тяжести за четверть оборота \\ E) кинетическая энергия \begin{array}{c} 1) \gamma \frac{mM}{r} \\ 2) - \gamma \frac{mM}{r} \\ 3) 0 \\ 4) m \left(\frac{v^2}{2} - \gamma \frac{M}{r} \right) \\ 5) \frac{mv^2}{2} \\ 6) mgr \end{array}$	
12	Горизонтальный стержень массой $1,5~{ m KF}$ и длиной $40~{ m cm}$ может вращаться относительно вертикальной оси, проходящей через середину стержня. Если в конец стержня попадает и застревает в нем пуля массой $10~{ m F}$, летящая со скоростью $200~{ m m/c}$, то угловая скорость стержня будет равна рад/с. Ответ округлить до целого		
13	Платформа в виде сплошного диска радиусом $1,5\mathrm{M}$ и массой $180\mathrm{kr}$ вращается по инерции вокруг вертикальной оси с угловой скоростью $20\mathrm{pag/muh}$. В центре платформы находится человек массой $60\mathrm{kr}$. Если человек перейдёт на край платформы, то его линейная скорость будет равна м/с . Ответ округлите до десятых		

© Томский политехнический университет , 2024