Спецификация

#	Название модуля	
1	РТ6 Математика 3.1	
1.1	12.1.1.1 Действия с комплексными числами в алгебраической форме (сложение, вычитание, умножение на число, деление)	1
1.2	12.1.1.2 Действия с комплексными числами в тригонометрической форме (умножение и деление, возведение в степень) (количество вопросов: 2) 12.1.1.3 Действия с комплексными числами в показательной форме (умножение и деление, возведение в степень) (количество вопросов: 2)	1
1.3	12.1.1.4 Извлечение корня из комплексного числа	1
1.4	12.1.1.5 Перевод комплексных чисел из одной формы записи в другую	1
1.5	12.2.1.1 Выделять действительную и мнимую часть 12.2.1.2 Вычислять значения основных элементарных функций	1
1.6	12.2.2.1 Проверять условия Коши-Римана 12.2.2.2 Проверять функции на гармоничность	1
1.7	12.2.2.3 Находить действительную и мнимую части аналитической функции по известной мнимой или действительной	1
1.8	12.2.2.4 Находить значение производной функции в точке, геометрический смысл модуля и аргумента производной (находить коэффициент растяжения и угол поворота) (количество вопросов: 2)	1
1.9	12.2.3.1 Интегралы от аналитических функций (количество вопросов: 2) 12.2.3.2 Интегралы по линии от неаналитических функций (количество вопросов: 2) 12.2.3.3 Интегралы по окружностям или их частям (количество вопросов: 2)	1
1.10	12.2.3.4 Интегральная теорема и формула Коши 12.2.3.5 Интегралы типа Коши	1
1.11	13.1.1.1 Использовать необходимый и достаточный признак сходимости числового ряда при анализе ряда на сходимость 13.1.1.2 Использовать признак абсолютной сходимости при анализе числового ряда на сходимость	1
1.12	13.2.2.2 Находить область сходимости ряда Лорана (количество вопросов: 4) 13.2.2.3 Строить области аналитичности функции для разложения в ряд Лорана относительно центра разложения z0 (количество вопросов: 4)	1
1.13	13.2.1.2 Уметь раскладывать аналитическую функцию в степенной ряд в окрестности точки z0 (количество вопросов: 4) 13.2.1.3 Применять стандарные разложения Маклорена для разложения аналитической функции в степенной ряд (количество вопросов: 4)	1
1.14	13.2.1.4 Находить области аналитичности заданной функции для разложений в ряд Тейлора относительно центра разложения z0 13.2.2.1 Выделять главную и правильную части ряда Лорана 13.2.2.4 Записывать ряд Лорана в любой точке комплексной плоскости	1
1.15	13.2.1.2 Раскладывать аналитическую функцию в степенной ряд в окрестности точки z0 13.2.1.3 Применять стандарные разложения Маклорена для разложения аналитической функции в степенной ряд 13.3.1.1 Находить особую точку	1
1.16	13.3.1.4 Находить вычет в конечной точке z0 13.3.1.5 Находить вычет относительно бесконечно удаленной точки z0=?	1
1.17	12.2.3.6 Линии и области на комплексной плоскости 13.3.1.6 Применять теорию вычетов для вычисления интегралов по замкнутым контурам	1
1.18	14.1.1.1 Знать условия, при которых функция f(t) будет являться функцией-оригиналом	1

1.19	14.2.1.1 Применять основные теоремы операционного исчисления для нахождения изображения 14.2.1.2 Применять основные теоремы операционного исчисления для нахождения оригинала (теорему о свёртке) 14.2.1.4 Применять основные теоремы операционного исчисления для нахождения оригинала	1
1.20	14.3.1.1 Применять методы операционного исчисления для решения дифференциальных уравнений	1
1.21	14.2.1.3 Применять теорему запаздывания для отыскания изображения функции, заданной графически 14.3.1.2 Применять методы операционного исчисления для решения систем дифференциальных уравнений	1
1.22	14.3.1.3 Применять формулу Дюамеля для решения дифференциальных уравнений (количество вопросов: 5)	1
	Итого	22

МОДУЛЬ: РТ6 МАТЕМАТИКА 3.1

Nº	Ответ	Вопрос	
 		Даны комплексные числа $z_1=1+2i$ и $z_2=3i$, где $\overline{z_1}$ и $\overline{z_2}$ — комплексно сопряженные числа. Установите соответствие между результатом и действиями над числами	
		<u> ДЕЙСТВИЕ</u>	<u>РЕЗУЛЬТАТ</u>
	АБВГД	$A)(z_1)^2$	1) $3i-6$
1	3 4 1 2 5	Б) $\overline{z_1} \cdot \overline{z_2}$	2) $6+3i$
! ! ! !	[3 [4] 1 [2 [3]	B) $z_1 \cdot z_2$	3)4i-3
	 	Γ) $5 \cdot rac{z_2}{z_1}$	4)-6-3i
		Д) $2z_1+3z_2$	5) $2+13i$
2	Результат вычисления выражения $\left(rac{1-i}{1+\sqrt{3}\cdot i} ight)^{12}$ получить в виде комплексного числа в алгебраической форме $x+iy$ $x=__(1)__$ $y=__(2)__$ (Значения запишите целыми числами или в виде обыкновенных дробей. Например: 1/3; –7/8 и т.д.)		
2.1	- 1/64	(1)	
2.2	0	(2)	
3	2 3 4	Значения корня $\sqrt[3]{i\cdot\sqrt{3}}$ 1) $z=-i\cdot\sqrt[9]{3}$ $z=\frac{\sqrt[6]{3}}{2}(-\sqrt{3}+i)$ 3) $z=-i\cdot\sqrt[6]{3}$	$z=rac{\sqrt[6]{3}}{2}(\sqrt{3}+i) \ 5) \ z=\sqrt[6]{3} \ c=rac{\sqrt[6]{3}}{2}(-\sqrt{3}-i)$
 	 	!	аписанных в показательной форме, с алгебраической
 	1 	формой их представления <u>Показательная форма</u>	<u>Алгебраическая форма</u>
: !	АБВГ		1) $z=-4\sqrt{2}\cdot(1+i)$
4		$^{A)}z=8e^{-rac{\pi}{4}i}$	$1)z \equiv -4\sqrt{2}\cdot (1+i)$ 2) $z=4\sqrt{2}\cdot (1-i)$
! ! ! !	2 1 3 4	$z = 8e^{-\frac{3\pi}{4}i}$	3) $z=-4\sqrt{2}\cdot(1-i)$
! ! ! !	1 	$^{B)}z=8e^{rac{3\pi}{4}i}$	4) $z=4\sqrt{2}\cdot(1+i)$
 		$^{\Gamma)}z=8e^{\frac{\pi}{4}i}$,
 	 	Установите соответствие	
5		<u>Функция</u>	<u>Значение функции</u>
	АБВГ	A) $2\exp\left(1+irac{\pi}{3} ight)$	1) $e(\sqrt{3}-i)$
	4 3 1 2	$E(1+irac{2\pi}{3})$	2) $e(i-\sqrt{3})$
! ! ! !	4 3 1 2	B) $2\exp\left(1-i\frac{\pi}{6}\right)$	$3)e(\sqrt{3}\cdot i-1)$
! ! !		「) $2\exp\left(1+irac{5\pi}{6} ight)$	4) $e(1+\sqrt{3}\cdot i)$
<u>.</u>	i ! !	,	

Nº	Ответ	Вопрос	
6	1 3	Для функций $f(z)=U(x;y)+iV(x;y)$ выберите все пары функций $U(x;y)$ и $V(x;y)$, удовлетворяющие условиям Коши-Римана 1) $U(x;y)=x^3-3xy^2-3y$ 3) $U(x;y)=y^3-3x^2y-3x$ $V(x;y)=3x^2y+3x-y^3$ $V(x;y)=x^3-3xy^2-3y$ 2) $U(x;y)=x^3-3xy^2+3x$ $V(x;y)=y^3-3xy^2-3y$ $V(x;y)=3x^2y+x-y^3$ $V(x;y)=3x^2y-3x+x^3$	
7	4	Если для функций $f(z)=U(x;y)+iV(x;y)$ известна действительная часть $U(x;y)=e^{-y}\cdot\cos x+2xy$, то мнимая часть $V(x;y)$ равна 1) $V(x;y)=e^{-y}\cos x+y^2-x^2+C$ 3) $V(x;y)=e^{-y}\sin x+y^2-2xy+C$ 2) $V(x;y)=-e^{-y}\sin x+y^2-x^2+Cx$ 4) $V(x;y)=e^{-y}\sin x+y^2-x^2+C$	
8	Производная функции $f(z)=\ln(1-z)$ в точке $z=1-2i$ в виде комплексного числа равна $x+iy$, где $x=__(1)__$ $y=__(2)__$ (Значения запишите целыми числами или в виде ообыкновенной несократимой дроби. Например: 1/3; –7/8 и т.д.)		
8.1	0	(1)	
8.2	1/2	(2)	
9	Интеграл $\int\limits_{(L)} (z- z)dz$ равен $x+iy$, где $x=__(1)__$ $y=__(2)__$ (L) — линия, заданная условиями $ z =2, {\rm Re}z\geqslant 0,$ обходимая в положительном направлении		
9.1	0	(1)	
9.2	- 8	(2)	
ļ		Установите соответствие выражений и их геометрических образов	
10	А Б В Г 2 3 4 1	A) $ z-2 =1$ 1 1) Окружность с центром в точке $z_0=1$ и радиусом $R=2$ 2) Окружность с центром в точке $z_0=2$ и радиусом $R=1$ 3) Окружность с центром в точке $z_0=2i$ и радиусом $R=1$ 4) Окружность с центром в точке $z_0=2i$ и радиусом $R=3$ 5) Окружность с центром в точке $z_0=2i$ и радиусом $R=1$ 6) Окружность с центром в точке $z_0=2i$ и радиусом $R=1$ 6) Окружность с центром в точке $z_0=2i$ и радиусом $R=1$ 7) Окружность с центром в точке $z_0=2i$ и радиусом $z_0=2i$ и ра	
11	2 4	Ряды, для которых выполняется необходимый признак сходимости 1) $\sum\limits_{n=1}^{\infty} \frac{\cos in}{n+i}$ 3) $\sum\limits_{n=1}^{\infty} \frac{e^n}{n+i}$ 2) $\sum\limits_{n=1}^{\infty} \frac{e^{in}}{n+i}$ 4) $\sum\limits_{n=1}^{\infty} \frac{\cos n}{n+i}$	

Nº	Ответ	Вопрос	
12	главной и правильн	$rac{1}{z^2+1}$ область, в которой разложение Лорана по степеням юй частей, имеет вид 2)(3) i <(4)	и $(z-2i)$ содержит бесконечное число членов
ļ 	(ответ записывае	тся в формате $r < z-a-bi < R$)	
12.1	1	(1)	
12.2	0	(2)	
12.3	- 2	(3)	
12.4	3	(4)	
13	Функцию $w=\frac{1}{\sqrt{z}}$ разложили по степеням $(z-4)$ $a_0+a_1(z-4)+a_2(z-4)^2+a_3(z-4)^3+\ldots$, где коэффициенты разложения равны: $a_0=__(1)__$ $a_1=__(2)__$ $a_2=__(3)__$ $a_3=__(4)__$ (Значения запишите целыми числами или в виде ообыкновенной несократимой дроби. Например: 1/3; –7/8 и т.д.)		
13.1	1/2	(1)	
13.2	- 1/16	(2)	
13.3	3/256	(3)	
13.4	- 5/2048	(4)	
14	4	e	$=0$ для функции $w=rac{1}{1+e^z}$) $R=1$) $R=\pi$
 		Установите соответствие ФУНКЦИЯ	<u>ПОЛЮС 2-го ПОРЯДКА</u>
15	А Б В Г 5 6 1 3	A) $f(z)=rac{e^{rac{1}{z^2}}}{(z^2+16)^2}$ B) $f(z)=rac{e^z}{z^2(z+4i)}$ F) $f(z)=rac{e^z}{(z^2+16)(z^2-8z+16)}$ $f(z)=rac{1-\cos z}{z^2(1-z)^2}$	1) $z = 4$ 2) $z = -4$ 3) $z = 1$ 4) $z = i$ 5) $z = 4i$ 6) $z = 0$
16	- 1/6	Дана функция $f(z)=rac{\cos\left(rac{z}{3} ight)}{\left(z-rac{\pi}{2} ight)^2}$ Вычет в точке $z=rac{\pi}{2}$ равен $\displaystyle{\mathop{\mathrm{res}}_{z=\pi/2}f(z)=}$ (Ответ запишите в виде обыкновенной несократимой	і дроби, например, 3/4)

√ 0	Ответ	Вопрос	
		Установите соответствие <u>Интеграл, взятый в положительном</u> <u>направлении обхода контура</u>	<u>Значение интеграла</u>
17	А Б В Г 6 5 1 2	A) $\int\limits_{ z =2}^{\frac{z^4}{z^5+1}}dz$ B) $\int\limits_{ z =2}^{\frac{z^3}{(z+1)^3}}dz$ B) $\int\limits_{ z =2}^{\frac{z}{z+1}}dz$ (7) $\int\limits_{ z =2}^{\frac{z}{z^5+1}}dz$	1) $-2\pi i$ 2) 0 3) πi 4) $-\pi i$ 5) $-6\pi i$ 6) $2\pi i$
18	4 5	t^2+4	лами $f(t)=(2t-1)e^{t^2}\eta(t)$ $f(t)=rac{\eta(t)}{t-3}$
19	2 4	Оригинал функции $F(p)=rac{p}{(p^2+1)(p+2)}$ имеет вид (для вычислений примените теорему о свёртке (умно $f(t)=\int\limits_0^t\cos au e^{-2 au}d au$ 2) $f(t)=\int\limits_0^t\cos au e^{-2(t- au)}d au$	ожения)) $f(t)=\int\limits_0^t\cos au e^{2 au}d au$ $f(t)=\int\limits_0^t\cos(t- au)e^{-2 au}d au$
20	А Б В Г 5 6 3 4	Установите соответствие между дифференциальным у $\frac{\mathbf{Уравнение}}{\mathbf{A}}$ $\mathbf{X}''-2x'=e^{-2t}, \ \ x(0)=x'(0)=0$ Б) $x''+2x=e^{-2t}, \ \ x(0)=x'(0)=0$ В) $x''+2x=e^{2t}, \ \ x(0)=x'(0)=0$ Г) $x''-2x'=e^{2t}, \ \ x(0)=x'(0)=0$	гравнением и его операторным решением $\frac{Oператорное\;решение}{Oператорное\;решение}$ 1) $X(p) = \frac{1}{p(p^2+4)}$ 2) $X(p) = \frac{1}{p^2(p-2)}$ 3) $X(p) = \frac{1}{(p-2)(p^2+2)}$ 4) $X(p) = \frac{1}{(p^2+2)(p+2)}$ 5) $X(p) = \frac{1}{p(p-2)^2}$ 6) $X(p) = \frac{1}{p(p^2-4)}$ 7) $X(p) = \frac{1}{(p-2)(p^2-2)}$ 8) $X(p) = \frac{1}{p(p+2)}$
21	1	(P + -)(P)	Эжения)) $F(p)=rac{1}{(p^2+1)(p+2)}$ 4) $F(p)=rac{p}{(p^2+1)(p+2)}$
22	Решите задачу Кош $x(t) ightharpoons X(p), y$	ши $x''(t)-x(t)=rac{1}{1+e^t}$, $x(0)=x'(0)=0$ с помощью формулы Дюамеля, где $y(t) ightharpoons Y(p)$.	

Nº	Ответ	Вопрос
22.1	1	Вспомогательное уравнение для уравнения $x''(t)-x(t)=rac{1}{1+e^t}$ имеет вид 1) $y''-y=1$ 2) $y''-y'=0$ 3) $y''-y=t$
22.2	3	Операторное уравнение для вспомогательного уравнения имеет вид $\begin{array}{ccccc} 1) & p^2Y(p)-Y(p)=1 & & 4) & p^2Y(p)-pY(p)=1 \\ 2) & p^2Y(p)-Y(p)=0 & & 5) & p^2Y(p)-pY(p)=\frac{1}{p} \end{array}$ 3) $p^2Y(p)-Y(p)=\frac{1}{p}$
22.3	3	Решение операторного уравнения имеет вид 1) $Y(p)=0$ 4) $Y(p)=rac{1}{p^2(p-1)}$ 5) $Y(p)=rac{1}{p(p-1)(p+1)}$
22.4	cht-1	Оригинал решения вспомогательного уравнения имеет вид $y(t) = $
22.5	3 4	Возможные решения исходного уравнения при использовании формулы Дюамеля, имеют вид $x(t)=\int\limits_0^t\frac{1}{e^\tau+1}(ch(t-\tau)-1)d\tau \qquad \qquad x(t)=\int\limits_0^t\frac{1}{e^\tau+1}sh(t-\tau)d\tau$ $x(t)=\int\limits_0^t\frac{1}{e^{t-\tau}+1}(ch(t)-1)d\tau \qquad \qquad x(t)=\int\limits_0^t\frac{1}{e^{t-\tau}+1}sh(\tau)d\tau$

© Томский политехнический университет , 2024